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The purpose of the researchproject "Multi-Disciplinary Optimization of

AeroservoelasticSystems"was to advancethe methodologyof multi-disciplinary

optimization and to develop efficient analytical and computational tools for

simultaneousstructural and control systemoptimal design with aeroservoelastic

constraints. These tasks have been accomplished successfully. The new

analytical methods, computationcodes and case studies developedduring the

courseof this work extendtheknowledgeof this complex subjectand supply the

aircraft developer with practical guidelines and efficient computational tools

for achieving integrateddesigngoals in an optimal way.

The first part of the work, in which the Minimum-State aeroservoelastic

modeling method has beenextended to deal with large problems with varying

parameters,has been reported in the interim report of March 1st, 1990. The

main resultsof this part aresummarizedin Appendix A, which hasbeenaccepted

for publication in the AIAA Joumal, and utilized in the MIST computercode.

The secondpart of the researchproject included further developmentsof

analytical and computationaltools and a synthesisof an end-to-endoptimization

procedure from data-baseconstructionto the numerical optimal design process.

This part is summarizedin Appendix B, which will be presentedat the 3rd

Airforce/NASA symposiumon multi-disciplinary analysis and optimization in

September24-26, 1990, SanFrancisco,CA, and utilized in the FASER computer

code.
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Extensions to the Minimum-State Aeroelastic Modeling Method

Mordechay Karpel*
Technion - Israel Institute of Technology

Haifa, Israel 32000

Introduction
I

In order to account for unsteady aerodynamics in first-order, time-invm-iant

state-space formulation of aeroelastic equations of motion, the aerodynamic forces have to

be described as a ratioaal function in the Laplace domain. The Minimum-State (MS)

aerodynamic approximation method la was designed to minimize the number of aerodynamic

states in the resulting aeroelastic model. References 2 and 3 applied the MS method to

subsonic aeroservoelastic problems with one flutter mechanism and demonstrated a reduction

of about 75% of the number of aerodynamic states relative to other methods with the same

level of accuracy. The effectiveness of the MS method was increased by the introduction of

a physical weighting technique a which weights each aerodynamic input data term according

to its relative importance. Reference 4 used the MS formulation for additional reduction

of the model size by dynamic residualization of high frequency structural states. The MS

and the physical weighting procedures are extended in this paper to expand their

efficiency and generality and to improve the dynamic residualization. Even though the

formulation and numerical examples deal with structural-mode-related aerodynamics only,

the extensions are applicable to control surface and gust related aerodynamics as well.

The MS ApD'oximation Procedure

The MS method approximates the Laplace domain generalized aerodynamic force

coefficient matrix by:

[Qs(p) ] = [A0] + {All p + [A2]P 2 + [D](p[I] - [R])-I[E]P (1)

*Senior Research Fellow, Faculty of Aerospace Engineering, Member AIAA



where p is the nondimensionalizedLaplace variable p=sb/V, where b is a referencelength

and V is the true airspeed.The resulting time-domain state-spaceaeroelasticequationsof

motion are presented in Ref. 2. The number of aerodynamic states (m) is equal to the

order to [R].

The input data are unsteadyaerodynamiccomplex matrices [Qs(ikt)]=[F(kl)]+i[G(kl)],

calculated at several p=ikt points where each kt=c0tb/V is a tabulated reduced frequency.

The approximation problem is to find the combinationof the real valued [A0], [All, [A2],

[R], [D] and [El of Eq. (I) that best fit the tabulated data. The mxm aerodynamiclag

matrix [R] is diagonal with distinct negative values to be chosen by the analyst. The

applications of Refs. 2 and 4 indicated that the results are not very sensitive _o the lag

values when they are spread over the range of tabulated k t values. Three approximation

constraints are applied to each term of [Qs ] in order to reduce the problem size by

explicitly determining [A0], [A 1] and [A2]. The formulation of Ref. 2 is extended here to

allow more flexibility in constraint selection without increasing the problem size. The

three constraints are: a) data match at kt=0, which yields:

A0.. = Fij(0) (2)
U

b) real-part data-match at a non-zero kt=k P or a zero coefficient constraint, which yield:

-1

[ ] 9 Di}T[_ ] {Ej} or A2.. = 0 (3)A2.. = Fij(0 ) - Fij(kf) /k} + { k [I]+[R] 2
1.] 1]

}Twhere {D i is the ith row of [D] and {Ej} is the jth column of [El; and c) imaginary-part

data-match at a non-zero kt=kg, or a zero coefficient constraint which yield:

A1..=Gij(kg)/kg+ {Di }T [k2g[I]+[R]2] - 1[R] [Ej } or A1.. = 0 (4)
U U

The approximation formula (1) and the constraint Eqs. (2), (3) and (4) yield an over

determined set of approximate equations which are solved for [D] and [El by an iterative,

weighted least-square procedure which starts with an initial guess of [D]. The equations

and the solution procedure are those of Ref. 2, modified to allow kf of Eq. (3) and kg of

Eq. (4) to have different values for different aerodynamic terms, and to allow the data

2



match constraintsto be replacedby zero coefficient constraints.

Approximation Constraints for Subsequent Dynamic Residualization

The MS aeroelastic model is used in Ref. 4 for a further reduction of the model size

via dynamic residualization which eliminates the states associated with a subset of high

frequency vibration modes, but retains most of their effects o_ the retained states. The

coefficient matrices of Eq. (1) are partitioned into tile retained (r) and eliminated (e)

partitions:

leeJ

(5)

Unlike the static residualization, which neglects all the e related partitions except for

, A2 , A 2 and A 9
the A 0 terms, the dynamic residualization neglects only the Ale e ee er -re

, and E improve the accuracy of the
terms. The retained eifects of A 1 A 1 , De e

er re

residualized model without increasing its size. The attempt made in Ref. 4 to improve the

dynamic residualization even further by constraining the neglected terms to be zero in the

preceding MS procedure (in lieu of data match constraints) did not yield better results.

The reason was that with A 1 =0 the approximation errors are increased significantly•
ee

This had a negative effect on the quality of the entire approximated aerodynamics

(including that of the retained modes) because the MS procedure minimized a single total

error parameter. The modification suggested here is to apply the least-square solutions

for [E r] and [D r] with the data associated with the retained modes only. The [D e] and

lee] matrices are solved with the entire data. As a result, the approximated [0 s ] isrr

not affected by the incl,asion of the eliminated modes in the approximation procedure.

Physical Weighting

A physical weighting method which weights each term of the tabulated aerodynamic data



according to a "measureof importance" is presentedin Ref. 2. The measure-of-importance

matrix associatedwith [Q:;(ikt)] is:

[xegg]t= l[-[Ms]k2 + i[Bs]kt + [Ks]+ qn[Qs(ikt)]]-ll T
(6)

where [Ms], [Bs] and [Ks] are the generalizedmass,damping and stiffnessmatrices and qn

is a nominal dynamic 'pressure. As shown in Refs. 2 and 3, the variations of the

measure-of-importanceterms of Eq. (6) with k may have very sharppeaks.In addition, the

peak values of many terms may be several orders-of-magnitude smaller than other peaks.

The resulting extreme variations of weights may cause unrealistic approximation curves.

To ensure good results at k values which fall between the tabulated ones, and to

facilitate the application of the resulting aeroelastic model to a variety of flow

conditions, structural modifications and control parameters, it may be desired to widen

the weight peaks and to scale up the extremely low weights. The peak widening is

performed in nwd cycle.,:where, in each cycle, Wij(kt) is changedto be max{'v_ij(kt_l),

A A

Wij(kt) ' Wij(kt+l)} of the previous cycle. The weights to be applied in the MS procedure

are then calculated by:

Wijt L . . {_rij• Ut t.ma x }' Wij J
1 ,j

(7)

where "q_rij = max Qs..(ikt) Wij t
l v, lj

and where Wcu t is defined by the analyst. In this way, the maximum weighted absolute

value of each aerodynamic term falls between Wcu t and 1.

Numerical Examples

The numerical examples deal with the mathematical model of the Active Flexible Wing

(AFW) wind-tunnel model (described in Ref. 4) with symmetric boundary conditions at Mach

0.9. The Doublet Lattice tabulated oscillatory aerodynamic matrices were generated at 12

k values between 0.0 and 2.0 using the STABCAR 5 computer code which was also employed to
t
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calculate the baseline p-plane roots using the p-k method with ten vibration modes.The

resulting root-locus plots are shown in Fig. 1 which indicates two flutter mechanisms.

The flutter dynamic pressureand frequency of the first mechanism (secondbranch) are

qf=1.447 psi and (of=58.94 rad/sec (kflut=0.21). The flutter results of the second

mechanism(seventhbranch)are qf=4.247 psi; cof=194.43rad/sec (kflut=0.69).

The physical weigl_tingswere performed with q=l.2 psi. Two types of physical

weightings are comparedbelow. The first type (symbolized by P-0) is with the original

measures-of-importanceof Eq. (6), namely with no peak widening (nwd=0) and with no

upscaling (Wcut=0 in Eq. (7)). The second type (symbolized by P-2) is with the two

pe.ak-wideningcycles(nwd=2) andwith Wcut=0.01. The maximal weighted magnitudesof the

P-0 aerodynamicdata terms aregiven in Table 1. The most important modesare2, 3, 6, 7

and 10 which have the highest diagonal values. The off-diagonal values associatedwith

thesemodes are also higher than those of most other terms. It can be noticed that about

50% of the terms in Table 1 aresmaller than 0.01. These terms are scaledupto 0.01 in

the P-2 case. Compari:_onof Table 1 with the aeroelasticbehaviour of Fig. 1 indicates

that the weighting is reasonableover the entire q range of interest.

i= 1 2

j=l 0.098 0.126
2 0.137 1 .000
3 0.085 0.722 0
4 0.010 0.059 0

5 0.001 0.003 0

6 0.027 0.132 0
7 0.013 0.079 0

8 0.001 0.008 0
9 0.011 0.070 0

10 0.007 0.046 0

3 4

0.086 0.012
0 707 0.038

_ 62__2 0.052
044 0.022
004 0.002

115 0.013
053 O.006

OO5 0.000
041 0.006

021 0.007

5 6 7

0.000 0.018 0.007

0.007 0.129 0.104
0.003 0.091 0.039
0.001 0.006 0.003

0.043 0.002 0.001

0.002 0.377 0.026
0.001 0.042 0.274
0.000 0.003 0.003

0.001 0.023 0.031

0.001 0.087 0.087

8 9

0. 001 0.006

0.008 0.079
0.003 0.029
0.000 0.002

0. 000 0.001

0 003 0.012
0 004 0.028

0 018 0.002
0 003 0. 135

0 000 0.098

10

0.005
0.045
0.015

0.0O0
0.001

0.060

0.066
0.001

0.090
0.291

Table 1" Maximal weighted magnitudes of the aerodynamic data terms.

The flutter characleristics of the resulting state-space models have been found by a

linear root-locus analysis with variable q. The quality of the approximations is evaluated

by comparing the state-space results with STABCAR result. An overall measure in each case

5



is the RMS value of the percentage errors in the four flutter parameters (qfl,r..0fl,qf2 and

C0f2). Comparisons between RMS flutter errors in non-weighted (N) cases and physically

weighted (P-0 and P-2) cases are shown in Fig. 2. It can be observed that the P-2 cases

generally yield the best results and that they are more consistent than the P-0 cases.

Calculations at Mach 1.15 (not shown) exhibit similar results.

The root locus of the P-2 case with 6 aerodynamic lags,

diag[R]= {-0.2,-0.45,-0.8,-12,-1.7,-2.0 } is compared in Fig. 1 to that of the reference

STABCAR solution. It car, be observed that the agreement is good over the entire ranges of

frequency, damping and dynamic pressure. This indicates that the physical weights

calculated at qn are adequate over the entire range.

All the MS cases above were constrained to match the data at k=0.0 and at the highest

tabulated reduced frequency, namely kf=kg=2.0. Data match constraints at k t values close

to either one of the two kflut values caused a slight improvement in the respective

flutter mechanism, but a slight increase of the overall RMS error measure by about 1%. An

error increase of about 2% was obtained when [A2]=[0] replaced the kf constraints. Much

more significant errors resulted from the replacement of the kg constraints by AI=0 even

when applied to the aerodynamic terms associated with the highest frequency mode only.

These errors were reduced considerably with the application of the new procedure for

subsequent dynamic resid,.mlization.

To demonstrate the application of the modified MS approximations in subsequent

flutter analysis with dynamic residualization, the P-2 model with 6 aerodynamic states has

been extended to include the first 20 vibration modes (instead of 10). The MS

approximations were performed with the special residualization constraints assigned to the

last 10 modes. The reference case is flutter analysis with all the 20 vibration modes.

Reduced-size flutter analyses were performed by eliminating a subset of high-frequency

modes by either mode: truncation, static residualization or dynamic residualization.

Variations of flutter dynamic pressure percentage errors vs. number of eliminated modes

are shown in Fig. 3 for the second flutter mechanism. Similar trends, but with smaller



| ".]

errors, were obtained fo the first flutter mechanism. These results demonstrate that MS

aerodynamic approximations facilitate additional high accuracy model size reduction via!!-i-.

dynamic residualization.
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Figures

Figure 1: Root locus of the 10 rnodesubsonic AFW case.

Figure 2: RMS flutter errors resulting from MS aerodynamic approximations.

Figure 3" Flutter dynamic pressure errors of the second flutter mechanism vs. #

of eliminated hiFh-frequency modes.
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Multidisciplinary Optimization Of Aeroservoelastic Systems

Mordechay Karpel"

Technion - Israel Institute of Technology

Haifa, Israel

Abstract

Efficient analytical and computational tools for simultaneous optimal

design of the structural and control components of aeroservoelastic systems are

presented. The optimization objective is to achieve aircraft performance

requirements and sufficient flutter and control stability margins with a minimal

weight penalty and without violating the design constraints. Analytical

sensitivity derivatives facilitate an efficient optimization process which

allows a relatively large number of design variables. Standard finite-element

and unsteady aerodynamic routines are used to construct a modal data base.

Minimum-state aerodynamic approximations and dynamic residualization methods are

used to construct a high accuracy, low order aeroservoelastic model.

Sensitivity derivatives of flutter dynamic pressure, control stability margins

and control effectiveness with respect to structural and control design

variables are presented. The performance requirements are utilized by equality

constraints which affect the sensitivity derivatives. A gradient-based

optimization algorithm is used to minimize an overall cost function. A
realistic numerical example of a composite wing with four controls is used to

demonstrate the modeling technique, the optimization process, and their accuracy

and efficiency.

Introduction

The design of the structural and control systems of a flight vehicle with a

given aerodynamic configuration starts with separate analyses which are aimed at

satisfying basic stress and performance requirements. These preliminary designs

are then optimized to satisfy structural and control stability margin

requirements with a minimal performance cost and without violating the design

constraints. Modern high-performance, control-augmented aircraft may have a

strong coupling between the structural and control systems through aeroelastic

effects• This calls for a multidisciplinary optimization process in which

structural and control design variables are modified simultaneously•

The purpose of this work is to present a practical and efficient

optimization scheme in which the various aeroservoelastic aspects are analyzed

and synthesized with a common model The applicability of this approach to• I

realistic design cases has been demonstrated by Livne et al. who presented an

integrated synthesis scheme that can treat a rich variety of behaviour

constraints and performance measures such as stress, displacements, control

surface travel and hinge moments, aeroservoelastic poles, gust response, drag

*Supported by NASA Grant NAGW-1708

"Senior Research Fellow, Faculty of Aerospace Engineering



and aircraft maneuver parameters. A thorough literature survey is also given in

Ref. I. The structural model of Ref. 1 is based on the equivalent plate

approach of Giles 2 with which a complex structure can be represented by a

relatively low number of degrees of freedom. This allows the inclusion of the

entire structural model in the aeroservoelastic model, which is impractical with

common finite-element models like those of NASTRAN.

The optimizati9_ suggested in this paper can start with any structural and

aerodynamic linear models, which has an advantage in practical applications. It

is assumed that the structure can be represented in the optimization by a

limited set of low-frequency vibration modes of the base-line model. The

general scheme of a major optimization cycle is given in Fig. i. An aeroelastic

modal data base is first constructed for a relatively large number of modes.

I. Data-Base

Design Variable

Matrices

I GeneralizedMatrice_

Finite-ElementIModel

Frequencies,
Generalized

Masses

I ModeSelection

Control

---9 System

Model ]Update

IUnsteady Aero]
Mode 1

,l
Gen. Aero]

Matrices 1

Data ]__[ Rational
Weighting /Approximat ions

No

II. Modeling

IAeroservoelastic

___,I Model

t III. Optimization

]
Objectives and

Constraints I

Sensitivity] I

Derivatives_ I

@ I I IYes Design
) Evaluation

Fig. I. The general scheme of a major optimization cycle.



The computational efficiency of this part is not as important as that of the
later parts because it is performed once for the entire optimization process or
at least for the m_jor part of it. The aeroservoelastic modeling part of the
scheme is aimed at resulting in a model of minimal size, but still accurate
enough for the optimization process. Several size-reduction techniques are
combined to achieve this goal and to provide the analyst with physical insight
and numerical measures for an a priori evaluation of the size-reduction effects.
The third part of the optimization schemeis the actual model update process to
minimize a cost function within the design constraints. High computational
efficiency of this part facilitates an interactive design process where the
design can inspect the results and change parameters in order to perform
trade-off studies and to obtain realizable design.

More details, analyticals development and numerical applications are given
in the following sections. For the sake of clarity we start with the

description of the test-case model that will be used to demonstrate the various

parts of the optimization process. The formulation and applications are limited

in scope to allow elaboration on the new features of this work.

The Test Case Model

The test-case deals with the Active-Flexible-Wing (AFW) composite wind-

tunnel model tested at NASA Langley Research Center. A top view of the NASTRAN

finite-element model is given in Fig. 2. A description of the aerodynamic model

y[in]
60:

40"

0 .

-20. 0. 20. 40. 60. 80. i00.

x[in]

120.

Fig. 2. Top view of the AFW structural model.



appears in Ref. 3. The mathematical model assumes antisymmetric boundary
conditions at Mach 0.9. The lowest 12 vibration frequencies and the associated
modedescriptions appear in Table i.

Mode # Frequency (Hz) Description
1 O.

2 7.023

3 7.856

4 13.069

5 16.161

6 27.408

7 38.271

8 39.639

9 41.137

10 49.922

11 51.640

12 57.403

Rigid body roll

Ist fuselage bending

ist wing bending

Missile pitch

2nd fuselage bending

2nd wing bending

Ist wing torsion

Missile yaw

Fuselage torsion

3rd fuselage bending

3rd wing bending

2nd wing bending

Table I: Natural Frequencies and Modes of the Base-Line Structure

The subject for optimization is the wing-box structure between y=18.45 in

and y=49.30 in. The wing-box composite upper and lower skins are mirror images

of each other. The wing-box is divided into ii optimization zones as shown in

Fig. 3. The base line weight of the optimized portion of the structure is 3.06

lb. The total number of high-strength graphite-epoxy plies in each of the skins

varies between four at zone 2 (one in each of the 0 °, +45 ° , -45 ° and 90 °

orientations) and twenty at zone 9 (four in 0 ° and two in each of the 28 ° , -62 °,

45 ° , -45 °, 73 ° , -17 and 90 ° orientations).

The model has 4 control surfaces per wing (see Fig. 2) driven by

third-order actuators. A zero-order control system reads the output of a roll

rate-gyro located near the centerline and commands the actuators through

different gains. A performance analysis established that a control law which

supplies a rolling moment of L=-3000 Ib-in per unit aircraft roll velocity

(minus pilot roll command) is required for adequate roll performance at the

design dynamic pressure qd=l.5 psi. This yields the equality constraint

EGi_i[_. = L/qd (1)
1

where E_. is the rigid aerodynamic roiling moment per unit dynamic pressure due
1

to unit defiection of the ith control surface and G. and n are the associated
1 i

control gain and aeroelastic effectiveness. In addition, the closed-loop
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Fig. 3. Wing-box optimization zones.

aeroservoelastic system is required to exhibit a sufficient flutter margin

qf k 1.44 qd
(2)

All the non-zero gains are required to exhibit sufficient gain margins

IGMil 6 db (3)

where GM.=20 log(G?/G ) where G?/G. is a positive factor by which G. has to be
l z i i z z

multiplied to achieve instability at qd (with other gains remain unchanged).

G?/G >I yields the positive gain margin and G?/G.<I yields the negative one.
i i i z

Phase margin requirements and their sensitivity derivatives are given in Ref. 4.

They are not discussed here because they are not critical in the test-case

problem of this paper.

The Aeroelastic Data-Base

The aeroelastic data-base (see top part of Fig. i) has been constructed

using the NASTRAN code. The modes consist of the 25 lowest frequency vibration

modes of the base-line structure, [@m ], and 4 control surface deflection modes,



[¢c ], of unit rotation of the respective control surface and zero deflective

elsewhere. The modes serve as generalized coordinates in the Laplace domain

equation of motion

where [M ], [B ] and [K ] are the generalized structural mass, damping and
s s s

stiffness matrices respectively, [M ] is the control coupling mass matrix, {_}
c

is the' vector of generalized structural displacements, {6} is the vector of

control surface commanded deflections, [Qs(S)] and [Qc(S)] are the generalized

unsteady aerodynamic force coefficient matrices and q is the dynamic pressure.

For the base-line structure [M ], [K ] and [B ] are diagonal where the first two
s s s

were calculated from the finite element model and [B ] was constructed with
s

structural damping of 0.01. [M ] can be calculated by
c

where [M] is the mass matrix in discrete coordinates. A convenient way to

calculate [¢c ] and [Mc] is by disconnecting the control surfaces from the

actuators in the finite-element model and adding degrees-of-freedom representing

{6}. These degree-of-freedom are mounted in the normal modes analysis by a

fictitious mass matrix [Mf] of large magnitudes. The test-case analysis was

performed with the 4x._ [Mf] matrix equal [I]I06 while the maximum value of the

other terms in the mass matrix is less than i. The resulting modes include [¢c ]

as rigid-body modes while the other modes, frequencies and generalized masses

remain practically identical to those of the original structure. Each control

surface mode is no1malized to a unit deflection of the respective 6..
1

Orthogonality implies

[ Cm ]T[ M 0 ][ ¢c ] = [0] (6)

Cmf 0 Mf I

where the matrices are partitioned according to the original coordinates and the

added ones. Equations (5) and (6) yield

[Mc]
which is of course much more computationally efficient than Eq. (5).

(7)

The unsteady aerodynamic code is employed to calculate [Qs ] and [Qc ] of Eq.

(4) (using [¢m ] and [¢c ]) for various values of the nondimensionalized Laplace

variable s=ik where k is the reduced frequency _b/V where _ is the vibration



frequency, b is a reference semi-chord and V is the flow velocity. The

aerodynamic data-base of the test-case include 13 generalized aerodynamic

matrices for the k values of 0., 0.05, 0. I, 0.2, 0.3, 0.4, 0.5, 0.7, 1.0, 1.4,
L

1.9, 2.5 and 3.1.

The remaining part of the aeroelastic data-base is the data needed for the

structural optimization. The unit value of a structural design variable Ps in

our case represents one composite fiber ply added to the upper and lower

surfaces of one of the zones of Fig. 3. Three design variables, representing

the 0°, 45 ° and -45 ° orientations are assigned for each zone. The stiffness and,

mass matrices, [K.] and [Mi] associated with Ps. are calculated by the
i I

finite-element code and pre and post multiplied by the appropriate partitions of

[¢m ] to yield

a,Kj 0EM,s _ Cm Ki Cm " s
aps" ' Ops"

1 1

(s)

Expressions for the derivative of [M ] with respect to Ps. are given in Ref. 4.c
i

In our case 8[Mc]/aps.=O because the structure of the control surfaces is not
i

modified throughout the optimization. The geometrical changes due to adding

plies to the wing surface (stacking effects) are assumed to be negligible.

Aeroservoelastic Modeling

The aeroservoelastic modeling process (see part II of Fig. I) is aimed at

obtaining an efficient con:3tant coefficient, state-space model to be used in the

simultaneous structural and control optimization. To do so, the tabulated

[Qs (ikc)] and [Qc(ikc )] matrices have to be approximated by rational functions.

A review and extensions to the most common rational approximation methods and

the associated model formulations are given in Ref. 5. Among those, the

Minimum-State (MS) method 6'7 has been shown in several applications to realistic

problems 7'8'9 to yield the most efficient aeroservoelastic models per desired

accuracy. Best MS results are obtained when the physical weighting algorithm of

Refs. 7 and I0, which weights the tabulated aerodynamic term according to their

(ik)] terms are weightedaeroservoelastic importance, is applied. The [Qs c

according to their effect on the determinant of the system matrix on the left

hand side of Eq. (4), calculated at the tabulated s=ikcb/V points, and the

[Q (ik)] terms are weighted according to their effect on the return signal in a
c t

Nyquist analysis performed with all the gains having the same non-zero values.

The aerodynamic matrices associated with the 25 vibration modes and the 4

control modes were approximated with 6 MS approximation roots, which yield only

6 aerodynamic augmenting states.

The formulation of the resulting aeroservoelastic model is developed in

Refs. 4 and 7. The closed-loop equation of motion for stability analysis reads



{i} = [X]{x} (9)

where [A] is the closed-loop system matrix and {x} is the state vector combined

of the structural states {_} and {_} " the aerodynamic augmenting states {x } and
' a

the control system states {Xc}. In our case, the full-size model has n=68

states (50 structural, 6 aerodynamic and 12 control states). The eigenvalues of

the constant coefficient, real-valued matrix [A] are used to analyze the system

stability. Root locus analysis with variable q yields the flutter dynamic

pressure, qf, at which one of the root branches crosses, to the right hand side

of the Laplace domain. The gain margins of Eq. (3) are found by a similar

analysis with variable G which yields the instability gain G?. More detailsi l

and numerical examples for the calculation of flutter, gain and phase margins

are given in Ref. 4. The accuracy of the MS approximation in the test-case has

been examined by comparing flutter results with those of NASTRAN (using the PK

method). The differences in qf and _f were less than I%.

Model Size-Reduction

The computathonsl efficiency of the optimization process is approximately
proportional to n It is therefore desired to reduce n as much as accuracy

allows. The vibration modes are divided for this purpose into three groups,

those which may be truncated, those which may be eliminated via residualization,

and those which remain in the model as independent states. The physical

weighting algorithm described above and in Ref. 7 has been found to be a helpful

guide in the mode selection-process. Two measures of aeroservoelastic importance

are assigned to each mode. The measures are

maxr IQs. (ik)I}Q_ = j, cIWijc . c
i zj

and (I0)

Q_ maXSW }2i = j,c[ ijc]Qc..(ikc)liJ

where W.. is the physical weight assigned to the (i,j) term of either the
zjc

tabulated [Qs(ikc)] or [Qc(ikc )]" The modal measures of aeroservoelastic

importance of 17 of the 25 data-base modes are given in Table 2 in decreasing
and Q"

order of overall importance. The remaining 8 modes, for which both QI. 2.
1 1

are less than 0.01, are truncated in the optimization process. The 6 modes in

the 2nd group of Table 2 are eliminated via residhalization and the II modes in

the first group of Table 2 are retained as independent variables.

8



Mode#t . m •
QI Q2 Mode # QI Q_

1 0.482 1.000

4 1.000 0.125

3 0.611 0.404

6 0.512 0.035

12 0.264 0.034

2 0.149 0.114

II 0.161 0.035

7 0.175 0.023

9 0.135 0.026

5

8

16

18

24

25

22

13

0.022

0 031

0 033

0 024

0 023

0 024

0 019

0 017

0.035

0.009

0.003

0.007

0.005

O. OO3

0.004

0.004

tThe other modes have Q* values of less than 0.01

Table 2: Modal Measures of Aeroservoelastic Importance

The truncation is performed by crossing out the associated rows on columns

in [A] of Eq. (7). The truncated [A] satisfies

]{} {}Ail AI2 U] U 1= i_f (ii)

A21 A22 U 2 U2

where subscripts 1 and 2 relate to the retained and

respectively, and {U} :is the complex column eigenvector related to s=i_f.

residualization in this work is performed by the dynamic method of Ref. 3.

residualized system matrix [A] satisfies

residualized states

The

The

(12)

It is assumed that the differences between wf and {U I} of Eq. (11) and those of

Eq. (12) are negligible. Consequently, the flutter eigenvalue and eigenvector

of [A] are used to calculate {U2} from the bottom partition of Eq. (II).

The effects of truncation and residualization on qf and its derivative with

respect to ps 2 are shown in Fig. 4. The solid lines give the percentage errors

introduced by truncation vs. the number of truncated modes. The base-line

values of qf=1.736 psi and aqf/aPs2=O. 188 psi have been obtained with the full

25 mode model where the gain values associated with the four control surfaces

are 0.0, -0. I, -0. I and 0.0664 respectively. The modes truncated at each point

of Fig. 4 are those with the lowest measures of aeroservoelastic importance
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Fig. 4. Size-reduction effects on flutter dynamic pressure.

defined in Eq. (I0). It can be deduced from the error rates of change that the

usage of these measures for mode selection is adequate. The errors due to the

truncation of 8 modes and residualization of 6 modes, also given in Fig. 4,

demonstrate the accuracy of the dynamic residualization relative to that of

truncation.

Control Effectiveness

Yhe expressions for the aeroelastic control effectiveness parameters of Eq.

(i) and their sensitivity derivatives follow the modal approach of Ref. II. The

real-valued [Qs(O)], [Qc(O)] and [Ks] of Eq. (4) are partitioned into the rigid

and elastic mode partitions:

Qs(°)] =
QSll s12

-
Qs21 s22

and

; [Qc(O)] =
Qcl I'
Qc 2

(13)

i0



s o
s

Whenthere is a single rigid body mode in roll, the effectiveness of rolling
momentdue to unit deflection of the i-th control surface is

= _ S Qc
nj 1 s 12 2.

Qc 1 , J
J

where {Qc}2. is the j-th column of [Qc]2 and
J

a[_ ]

[B]=[K ]+[AK ]+qd[Qs]22 ; InKs] = 7.i ss s aps.
1

-- Ps.
1

(15)

where a[Ks]/Sps, is calculated by Eq. (6) using elastic modes only. The
1

differentiation of Eq. (14) with respect to a structural design variable Ps.
1

i Qcl. i

J

It should be noted that the calculation of all the control effectiveness

parameters in Eq. (14) and all their derivatives in Eq. (16), for a given set of

design variables involves only one matrix inversion of order n where n is the' s s

number of elastic modes after truncation (16 in our case).

yields:

an i

aPs.

The variation of W4 and 8w4/a.Ps2 , divided b9 their base-line values, with"

the number of low frequency modes taken into account are shown in Fig. 5. The

base-line values, calculated by all the data-base modes are W4=0.216 and

8D4/aPs2=O. O079. The stars indicate the modes which will be actually truncated

in the optimization. The convergence rates demonstrate the adequacy of the

modal approach in considering control effectiveness in structural optimization.

It should be noticed, however, that the convergence of the sensitivity

derivatives is slower than that of W itself.

Sensitivity Derivatives and Constraints

The sensitivity derivatives of flutter dynamic pressure and gain and phase

margins with respect to structural and control design variables are presented in

Ref. 4. They are based on the neutral stability eigenvalue, the associated

column and row eigenvectors and derivatives of [A] of Eq. (7), namely the system

matrix before residualization. When the model is residualized, the full-size

11
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column eigenvector is calculated from the reduced-order one as discussed after

Eq. (12). The full-size row eigenvectors are calculated in a similar way but

with Eqs. (II) and (12) transposed.

Equality constrafnts are defined as a linear dependency between the design

variables of the form

ZCiP i = Co (17)

One of the design variables, Pk which has a non zero C k, is defined as a

dependent variable. The differentiation of Eq. (17) with respect to an

independent design variable, pj, yields the constrained derivatives

aCi ] a8 _ a 1 Cj + Z -- Pi

a_j 8pj Ck i 8pj apk

(18)

In our test-case, the rolling moment requirement of Eq. (I) is utilized by

defining G4 as a dependent gain, which yields the constrained sensitivity

12



derivatives with respect to other gains

_jE8
_ a j a (19)

ac. - aG4
3 3• n4L84

and

design variables

the constrained sensitivity derivatives with respect

3hi [&iGi) 3o_C- : a___, i z -- aG4
Ops " aPs. _4[S4 i OPs.

3 3 3

to the structural

(20)

The Optimization Process

Three cases of the base-line structure with different control gains are

given in Table 3. All the cases satisfy the rolling requirement of Eq. (i) with

GI=O.O. Case I is with G2=G 4 and G3=O, which yields qf<qd" Since @qf/@G 4 is

relatively large and _4 is relatively low, G4 can be used to suppress flutter

while the other gains compensate for the loss of rolling moment. This is

utilized in cases 2 and 3 in which qf>qd but the flutter and gain margin

requirements of Eqs. (2) and (3) are not met. Even though the main participants

in the flutter mechanisms of cases 2 and 3 are the same modes (3 and 4 of Table

i), the flutter frequency, gain margins and the derivatives are substantially

different, which indicates a high sensitivity of the stability characteristics

to parametric changes.

To obtain a balanced structural design, all the design variables associated

with the -45 ° ply direction are constrained to be equal to the +45 ° ones. To

avoid violation of stress requirements and to obtain a smooth design, all the

structural variables are limited to O<_ps <_s where Ps=l.O in zones 1 and 2 of
1

Fig. 3, 2.0 in zones 3 to 5, 3.0 in zones 6 to 8 and 4.0 in zones 9 to II. The

control gains are constrained to GI=O and the other IGil!G where G is equal to

either 0.09 or 0. I. The remaining independent design variables are the twenty

two 0 ° and 45 ° structural variables and two control gains (G2 and G3).

A preliminary analysis indicated that the critical stability parameters are

qf and the positive GM. values for j=2 to 4. Consequently, the cost function to3

be minimized is

Aw(AW-AW ) Af(qfo-qf) 4 (GM-GM.)
o _ o 3J = e , e + e (21)

j=2

where qf and GM °
0

are the requested flutter dynamic pressure and gain margins,

13



parameter Case i Case 2 Case 3

G2 -0.0871 -0.0900 -0. i

G3 0.0 -0.0900 -0. I

G 4 -0.0871 0.0203 0.0667

qf(psi) 0.633 1.564 1.745

mf(rad/sec) 78.910 74.646 55.180

GM2(db ) - 0.798 7.993

GM3(db ) - 0.613 8.743

GM4(db ) - 9.231 4.148

8qf/aG 2 1.94 6.97 -1.62

3qf/aG 3 2.81 9.30 1.27

aqf/aG 4 5.00 45.04 -I0.02

aqf/aG 2 -3.82 -153.4 34.06

8qf/aG 3 -15.86 -39.3 12.09

Table 3: Three Base-Line Design Cases with Different Control Gains

AW is the added weight AW is the allowed weight penalty and AW and Af are cost' o

weighting parameters. The sensitivity derivatives of J are

Aw(AW-AW ) 4 aGM (GM -GM.)o 8qf Af(qfo-q £) J e (22)
aJ -AW w. e - Af -- e _ _ aPi o J
8pi z ap i

j=2

where Pi is either a structural variable Ps. or a gain G.1 and w.z is the weight
1

penalty associated with ps.=l.
1 ""

A steepest descent optimization algorithm has been used to perform the four

optimization cases presented in Tables 4 and 5. Case I of Table 4 has been

performed to find the optimal gains, limited by G=O.I, without changing the

structure. The results are close to those of case 3 of Table 3. but with better

qf and gain margins. However, qf does not satisfy the required margins. The

14



parameter Case I Case if Case I II Case IV
gain only G3=0

...... 0. I 0. I 0. I 0.9

AW(ib)

qf(psi)

_f(rad/sec)

GM2(db)

GM3(db)

GM4(db)

O.

2.031

51.397

6 57

7 48

7 07

0.070 0.277 0.287

2.191 2.183 2.620

59.307 83.610 66.420

6.56 9.57 6.39

6.69 - 5.24

8.37 8.92 8.84

G 2

G3

G4

-0 0974

-0 0914

0 0481

-0.0974 -0.1 -0.09

-0.0901 0.0 -0.09

0.0435 -0.0315 0.0230

Table 4: Four optimization cases.

i zone ply Case II Case llI Case IV

direction (o)

I I 0 0.199 I. O.

2 I 45 0.020 I. O.

3 2 0 0.317 I. O.

4 2 45 0.015 I. O.

5 3 0 0.002 O. O.

6 3 45 0.098 2. O.

7 4 0 O. O. O.

8 4 45 0.157 2. O.

9 5 0 0.014 O. O.

10 5 45 0.035 2. O.

11 6 0 O. O. O.

12 6 45 0.075 O. O.

13 7 0 O. O. O.

14 7 45 O. O. O.

15 8 0 O. 0 O.

16 8 45 O. 0 O.

17 9 0 0.538 0

18 9 45 O. 0

19 10 0 1.346 0

20 10 45 O. 0

21 11 0 O. 0

22 11 45 O. 0

092

4.

O.

4.

O.

4.

O.

Table 5: Structural changes (ps.) in Cases II to IV
1

simultaneous structure and gain optimization of Case II yields sufficient

margins at the penalty of adding 0.07 Ib to the structure. It can be noticed
O

from Case II of Table 5 that the 0 plies in the wing root zones 9 and I0 and in

15



the wing tip zones 1 and 2 are the most effective. The 45° plies of zones 3 and
4 have also someeffect while the others are either not effective or constrained
to the minimumgage. Case Ill is the sameas II but with G3=O. The required
margins are also met but with an additional weight penalty of 0.207 lb. The
flutter frequency and the structural changes are substantially different than
those of Case If. The 0° and 45° plies Of zones 1 and 2, and the 45° plies of
zones 3 to 5 achieve their maximumlimits while all the others remain at or
close to their minimum limits. Case IV is the same as Case II but with gain
limits of G=0.9. The optimization process stopped in this case when all the
independent design variables reached their limits. The differences between the
resulting structures of Table 5 demonstrate the importance of simultaneous
structural and control optimization of aeroservoelastic systems.

The variations of qf, AW, ps6 and Ps21 along the 10 step optimization
process of Case III are plotted in Fig. 6. This case has been performed with a

2.5 I

qf

f
/
/
/
/

(p
J

P6

(Ib)

!0

Fig. 6. Variations of flutter dynamic pressure, added weight and two structural

variables along the optimization path, Case II.

34 state aeroservoelastic model (22 structural, 6 aerodynamic and 6 control

states). The computation cpu time was about 5 min on a MicroVax 3200. The

dashed lines of Fig. 6 are for the same optimization process but with all the 25

data-base modes yielding a 62 state aeroservoelastic model, which took about 32

cpu min. Figure 6 demonstrates the efficiency of the optimization process and
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the accuracy of the reduced-size model relative to the full-size one.

Two NASTRAN model updates were performed with the Ps values of Cases Ill

and IV of Table 5. The entire aeroservoelastic modeling process of Fig. 1 was

repeated for each case, followed by root-locus stability analysis. All the new

stability characteristics were within 3% of the associated ones in Table 4,

which demonstrates the accuracy of the presented approach.

Conclusions

A systematic method for data-base construction, modeling and structural

and/or control optimization of aeroservoelastic systems has been presented. The

method is applicable to any objective function that can be analyzed by the

normal modes approach and analytically differentiated with respect to the design

variables. Standard, commercially available finite-element and unsteady

aerodynamic computer codes can be used to construct the aeroelastic data-base.

Application of Minimum-State rational approximations of the aerodynamic matrices

yields a low number of aerodynamic states relative to the number of structural

states. The weighting algorithm used to select modes for model size-reduction,

and the dynamic residualization method have been shown to yield high-accuracy,

reduced-order models. Sensitivity derivatives of flutter dynamic pressure and

control margins have been extended to deal with residualized systems.

Expressions for an efficient calculation of aeroelastic effectiveness parameters

and their sensitivity derivatives have been presented and used to implement

aircraft pe[formance requirements. The ensemble of all these analytical and

computational techniques yields an efficient, high-accuracy optimization process

which can be used as a practical design tool of realistic modern aeronautical

composite structures and control systems.

i.

.
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